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Fluid lines o_ten play a major role in the dynamics o_ hydraulic control

and other systems. The hydraulic line between two cross sections is charac-

terized by a four terminal network with pressure and rate of flow the inter-

acting variables. Use of this network leads to transcendental transfer

functions that are not suited to the co,,putation of system transients. The

_tandard technique of power series expansions fails in that this yields in-

stability in most applications whe_'e this instability does not actually occur.

These difficulties are overcome by the use of infinite products. Only a few

factors of these products are needed to compute translents to engineer_g

precision. In contrast to the classical l_nped constant approach to distrib-

uted systems the accuracy of the approxinmtion can be seen from the factors

dizf_ct_y. The technique applies to eicctrical trsulsmission lines as well as

hydraulic. By this method one can smooth transient responses to step changes

arising in water hammer studies. Good agreement has been obtained betwee_

theory and experiment. -- _ UT_(O _

I-Reproduced .from
,Lbest ava|lable copy. W
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INTRODUCI_C N

High power and fast response hydraulic systems are reou_ red for many

missile, aircraft and other spplicetions. In the analysis and synthesis of

such systems the fluid l_nes coupling the various components must be consld-

erea. The lumped constant approach is often emplo_ed, wPcre 9 or I0 lurers

per wavelength is used as a r=le of thumb (I) I. T_is _Trc_c_ is limited

since infinitely many degrees of free0om are :,ctually i[volved. "_nere feasi-

ble the distributed parar_ter aeproach _s to be preferred. .q_e second order

transfer matrix ecuatlon of electrical transmiss'on !_ne theory is used here

to relate pres_ures and flows _t two cross sections of a hydraulic llne. The

matrix _.ou_t.ion describes _ four terminal network, and _grees well with fre-

cuency response exoeriments for l_rKe and small _IDes.

With the aid of boundary conditiens one can often obtain transfer func-

tic ns relatlng two of the four variables associated with two cross sections

of a line. This is true, for example, if there is a fixed orifice at one of

the sections, or there is a large reservoir at one seet_(n and a valve at

the other discharging to atmosphere; or there might be s tank ahead of the

valve. The transfer functions are transcendental in the Laplace v_riable s.

It is convenient to employ these 151ncti,_ns to c_mF_te freeuency resrcnse bat

serious mathematical dlffim,lties are encountered when they _re used to cal-

culate transient reslxnse. The standard technioue of expanding the functions

_n power series yields charseteristic ecuatiens w_th negative coefficients

implying system instability wh ere it does not actual]y occur. To overcome

this difficulty the transfer functions sre written here as ouotlents of in-

i Numbers in _zrentheses refer to t_e bibliogr_Way near the end of the raper.
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finite oroducts of factors linear in s. In practi_e one need kee,_ ('hi\,a

few of the factors. A major advantage of this aonroach over the standard

lumped constant technique is th:_t one can see the accuracy nf the aroroxi-

marion directly from the factors. The Inclusirn of more t_ rme to apnroximate

the transfer functions to greater bandwidth does n_t rcQulre solving succes-

sively higher degree _lgebr_ic ecuat_ ons. The infinite rroduct a,,_'rc_ch

ap lles to electric as we]] as hydraulic ]_nes.

Notation

a

A

A1

B

hi(s)

E

f

g

o(s)

elCs)

O2(s)

o3(s)

Gli(S)

hT

H(x,s)

-- Speed of sound in ].__neft/sec

- Cross sectional area ft2

- Orifice area ft 2

- Constant in characteristic ecuation

- Constant of integration, i _ i, 2

- Modulus of elasticity of pipe

- '.'fallthickness of pipe

- Acceleration of gravity ft/sec 2

- Transfer matrix

- Normalized transfer function between head and flow at section 1

- Transfer function b(-tween heads at section 2 and sectirn 1

- Transfer function betw<.en flows at sectic.n 2 _nd section 1

- The ith root fac_or approxinmt_en to Gl(s)

- Pressure head devjat_on ft

- Pressure head devlat_on in ch;_.mber

- Laplace transform of h(x,t)
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Hi(s)

J

K

Kf

Ko

L

_o

oi(x,t)

Qi(s)

c(x,s)

r,

8

S(t)

t

Te

u(x,t)

U(x,s)

Vi( )

x

z

Zo

@l
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- Laplace transform of h(x,t) at section i

- V -i

- Bulk Modulus of fluid

- Pipe friction coefficient

- Reciprocel of slo,_e of preLcure ver._us flow curve 2t _-verage
flow

- D_stance betweer, sections i _nd 2, ft

- Flow increment ft3/sec

- Flow rate deviation ft3/sec

- Laplace transform of qi(t)

- La;_lace transform of A u(x,t)

- Pipe inner radius

- Laplace wri_ble, tr_nsfor_,_i<n with r_s_ect to tL_e

- Unit step functicn

- Time, sec

- L/a, sec

- Velocity of fluid in piFe, cevi-at_cn, ft/sec

- Laplace transform of u(x,t)

- Column vector wit_. elements _i(s) _nd Hi(:_)

- Axial pipe coordinate, ft

- Real rart cf root of character_slic e_uati:,n

- Variable in characteri_.tic ecuat[on

- a/g A, sec/ft2

- ;Velght density of fluid divided by eouival_,nt bulk modulus, ft" I

- _" s_ + gKfs

- Damping f_ctor
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f - Viscosity of fluid, cp

- Freouency, ra_ans/sec

FUNIJ_!_ T/d, LQUATIC_S

It is assumed in this ana]Tsi_ t_at the _ydr_u]ic !_ne is a straight

horizontal rite of c_nstant circular crozs section. At en.9 cro_s sect]cn

average nre_sure head, w_locity _nd fluid density are employed. FrictSon

is first ne£1_cted. The coordinate of distance along th_ pi_ __nd time _re

denoted by x and t respectively. The deviations in average velccity ond

prezsure head _t a cross sectirn with coordinate x for t_,e t_e t _r_ given

b" u(x,t) and h(x,t) respectively. Letting f designate the fluid density,

g the acce]eraticn of gravity, K the bulk modulus ¢f elasticity of the pi_e

m_terial, f the pipe wall thicknesr _ and r the inner r_ipe radius, the well-

known eNuations of flow are (1)

a u(_,t) _h (x,t)

_x _t
[ll

_ere

_u(x,t) _h(x,t)

_t _x

The speed a of sound in the pi_e is given by

l 2r]m @ m

K fE

[31
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Let U(x,s) and H(x,s) be the LaT_l_ce transforms of u(x,t) and h(x,t) resrec-

tively where s is the Laplace vsrJabl_ =. Let q(x,t) t_ the aw_ra_e flow r-_te

deviation at a p_pe section of erea A, whence

a(x,t) = A u(x,t) [&l

let O(x,s) he t_e Laplace transfcrm of o(x,t). Let s(cti_ns 1 _nd 2 d_slg-

n_te the cross sections x = 0 and x = L o£ the pine. See Figure 1. The

variables Hi(s) , qi(s) for i = l, 2 are c_eflned by

Hz(s) - _(o,s)

H2(s) : H(L,s)

_(s) - _(O,s)

Q2(s) : Q(L,s)

The line impedance Z
0

and time constant Te are given by

a

Z0 =

Ag

L

Te -
a

[6]

The initial conditions u(x,O +) = h(x,O ÷) = 0 for flow rate and pres_ure

head deviati_ns at t - 0 ÷ are assumed to hold. The solution of Eouaticns

[i] and [2] is now given by the matrix eouation

where

G(8)

_(_) Vz - V2

i ]co sh Te s - _ sinh Te s

-Ze sinh TeS cosh Tes

[7]
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[
VI '-

Hl S)

Q2(s)V2 "
H2(s)

See the block diacram of Figure 2 _4_ere _ is a summer.

Equation [ 7] applies if the pipe is not strai_t:t but }_s no s};arp

corners.

T:,2TS

The validity of houation [ 7 _ was verified for L_rFe lines by freauency

response runs of John DQn._ison _nd Rufus Oldenburger (8) at the Apalnchia

power house of the Tennessee Valley Authority. They oscil]:._t_d the gates of

a 53,500 horsepower hydraulic turbine and recorded _ydraulic among ether

variables. This system involved an 8 mile 1P foot diameter tunnel, a dif-

ferential surge tank, and two 600 foot penstocks, ii feet in di;_meter. Ex-

cellent agreement b_tween theory and practi_:e was obtained over the freeuency

range of _ cycle per hour to 2 cps. Mr. J. D. Reg,tz at the Lewis Center of

the National Aeronautics and Space Administr:_tion made fre_'uency r_s_onse

runs on a 1 inch diameter stainless steel pipe (3). The distance between the

cross sect_cns 1 and 2 of this pipe was 68 f_et. Wall thickness was 1/16

in. Good agreement was obtained for 0.5 cps to 90 cps. The fluid was JP-A

Jet fuel at 50 psi gauge, 25 ° C., aver._ge flow rate of 37 in3/sec, and Reynolds

number about l_,o'O0. The -_rea of a valve near section 1 was varied. _e fluid

discharged to atmosphere at section 2. Pressures and flow r,_t_s at sectirns

i and 2 were recorded. Runs on a _ inch diameter line at the Automatic Control
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Center of ?urctue University haw sl_c been successful.

The tests mentioned _!ove indic:,te +hat t_e basic w_ter ha_er _,_,uatlens

[1] and [21 hold, friction effects _re l_rg,_v negligible (especi_.lly at high

fr¢ouencies), and longitudinal pipe vibr;_t_cns are small compared to the phe-

nomena de,,crib_d by Eouation[71.

LINE DISCFARGING T._'ROUGFA FI)]JD OLI_ZCh

It is supposed that there is a fixed orifice at secti._n 2 of Figure 1.

This is the ca e of Figure 3 where t_e volume of the c _ smber C _t section 2

is zero and the ooening y(t) of the v_lve is constant. No restrictions are

placed on the _ysical configur_ti n to the left of sectien 1. Thus this is

the case of a line discharging through an orifice. It is assumed that the

following relation holds at section 2 for _ constant Ko der_ndent on the

orifice charact_:ristics :

Hence

a(L,t)= % h(,.,t) [8]

%(_) - % .2(s) [9]

Eouatio_ [8] holds for an arbitrary orifice and small changes in pressure

fer functions Gl(S) , G2(s) and G3(s) are obtained, where

HI(-_) cosh Tes * K_Zo stnh Tes

%('_> ° _---- . _ [lO]
_l(S) cesh Tes * .--- sinb Tes

KoZo
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.2(s) z

Hl(S) cosh Tes + KoZosinh Tes

°3( .....
s) - Q1 ('_) cosh Tes . 1_ sinh Tea

%%

GI(J_ ). To verify _;ouation{7J J. D. Regetz made theoretical snd experi-

mental plots of t_e magnitude and phase Of tt is transfer function versus fr_-

quen cy.

Lirik 4IT}_ (FNST/_q FR_ %."U:-t.g i_ Ot'L _D

Consider the crnfiguration of Figure 3 w ere t_ere is a chamber C at

section 2 of the llne. _e c, amber _ressure head devl_tion from eouil_br/um

is denoted by hT. The f_uid disch_r_-e_ to atmosphere from the c_amber C

through a vnlw. The deviatio in _ne effective orifice nre;_ of the v_lve

is taken to be Aly ( t )

Now

for a constant A1 and valve stroke deviation y(t).

hT -

For constants c L and c2 depene:ing cn the c_:_r_cterist_cs of the valve, _nd a

constant c3 denendSng en the bulk modulus of the fluid and chamber c_aract, r-

istics one has

dh(L,t)

q(L,t) - elY(t) * c2h(L,t) + c3 []141
dt

Thus
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Q2(s) = cI [(s) • c2 H2(s) + c3 s H2(s)

where Y(_,) is the Implace trBnsform of y(t).

It i.s assumed t_t t,_:er_ _s B so,_rce of cc, ns_ant prc__._ure :_t section 1,

as _,,hen there is a l_.rce r_,servoir st this _,ectiCn, or accumu)_tor sur,_lying

fluid, or a pur, r with s relief valve. Now

h(O,'_) - o [16]

whence

_uations [71 a_d [171

 ou t,on 

Q2(s)

- - %%¢s) sl.hT,s [19]

_nd [191 J:np!3' that

Q2(s) cosh Tes
-'-"-- - cI ...... [201

Y(s) cosh TeS * Zo(C2 + c3s) sinh Tes

H2(s) slnh Tea
.... ZoC 1 - [21]

Y(s) cosh Tes * Zo(c 2 * C3S) sin[,_Tes

The case of a _ nstant pressure source at section 1 and a valve a t sec-

tion 2 nischarging to atmosT'here occurs when t,._e volume of chamber C is zero,

_.ence Zouations [201 ,_nd [211 ar_ly wi_ c3 = O.
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Linear pipe fr!ct'on _y be hncluded by, using

au(×,t)

_t
= -g

_h (x,t) 1

* Kf u(x,t) ]at

in place of Ecuation [2] , '^'hereKf is a friction ccnsU_nt.

proved adeouate to 6escribe flow in ½ inch diameter lines.

defined by

With the initial ccnditions

we have

u(x,O +) " h(x,O +) = 0 ,

o/3(s) vI - v_

wh e i,_

- Zo
s

_.nh Te /_ ( s )

With the fixed orifice _s the boundary condltien at _:ectien 2, the ratie of

pressure head to flow deviations at section I is kJw, n _y

1

Ko

/3(_)
_o_ _e,_(s)•KoZo----, _h T_/'3(_)

For s numerically large /_(s)may be rerl_ced by s whence E_uation [25]
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reduces to E_uat]cn [ i0]. Since for freoue)_cy response s " j¢_ it follows

t_at friction effects diminish as the frequency incr_Jases, and are ne<ligib]e

at high frenuencies.

For the tests ¢.f J. D. Recetz

Zo = 28,700 sec/ft 2 K = 5.A3 x 10-5 ft2/sec
o

T e " O.O17(, sec Kf = 0.O26£ sec/ft

The differences in magnitude and _ase anF]e for the input llne iuped:_nccs

h% at i cps and less than 1% at 5 cns.

PERFECT TRANSMISSION

For the test,_ of J. _. Regetz

"

From .ouation [IO] the ma_niLude ratio of pres_ure bead 6.ev_,t ':`n to flow r_te

deviation at s,ct<on i nor_]ly varies with t e, rrer.u,ency. If, however.

tt,e i.ine tr:msfer functions Gl(s), G2(s) end G3(s ) b, came

Gl(S) = 1 , G2(s) = G3(_) = e-We s [

Where Conditior, [2,7] is satisfied, t e analys_s of t'e line is Bimnle since

pre_sure and flow rate deviations are oroportional _nd in rhase '_ith each

ot;_er at eac? cross sectien of the ]inc. The pro,_rtl, n is independent of
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frequency. Pressure and flow distur}6nces ._,Ixprcpn_:at_-dal(,ng ire line ao

I_re del_ys wit_ the delay lime T e between ,,_ectlons 1 and 2. i'e aut,'-r,rsf_el

t',at tr,ls phenomencn m_y have wortb,_hi'e Fr _ctice! appl_cat_en_-:.

!o E:o]- [:4'[ 01'
proport:onal to ::uotient: of :rensc_-r<_::_.] f_,nct:r_s of the form F(z), where

and z = Tes. Here Bis a constant or flmct_cn of s. lhe ,ame is true of

the transfer funct;ons _ri:_,g f_m _enatic.n [PL] fer the e::_e _'f :_ne

friction, except _h_t z is 3 me,re c,,m.licated funct-'on of s. gev, re m_the-

m-tlcal difficulties _r':_e _.('n the Iran::cend_ntal functi_ ns are employed

c._r_-ctly to cc,"_rilte_yste.'n resfonse to step :nd o+hev is_Jrbance_:. _hen

F(z), z = Tes , i_ the (!encm::n::t,r of such a transfer functi<'n _ke teuhnlo_le

of e×panding F(z) iI_to a ,,ow_I" _er_e: in z, and keerin 6 lo':er order ter.m.s to

obtain r_ti-,nal aTTrc,x]m_t,i ns to the _ransfer funct':ns fills. _us, kee_:-

ing terms to the fifth degree yie]_is t_(" aoprexim_t:on Fs(z) , ,,J:(re

z2 Bz 3 z h Bz 5

F5(,: ) . : . _,. + -- • -- + -- , -- po]
21 3.1 hl _'

For B / 0 the functJ on Fs(z) has a zero in the right half plsne. It follows

that fifth and higher degree approximat_¢ns to F(z) yield inst,_bil!ty where

it does not occur physic,:,!ly. To svold this d._fficult,y the auth, r$, Exc_nd

F(Z) into _ infinite product inst, ad.



Let x and y be t.Se real and imaginary parts cf z, so tJ_at z = x + jy.

Nrit_ng cosh z and :-_inh z as

e Z + e -Z e Z _ e -Z

t,_e eouaticn

become s

cosh z = ' j sinh z =
2 2

cosh z + B sinh z = 0

B-I

e2x cos 2y ÷ J e2-x sin 2y =
B+I

B-I

B+I

If B is real Lauation [32] gives

e2x cos 2y

[31]

[32]

[33]

e 2x sin 2y' " 0

Solving h_lations [33 ] _md [3&] the rects of :',_u,_tf_n [31]

be

B-1 2n*lB+I 2

-_jn_ B >i

For B = 1 there are n¢ bounded roots of 'bouation [_I].

Introduce x H where

B-I

x B
B*I

;_re fo'_nd to

[35]
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From the roots of Equation [31] th( funct_:n F(z) can be factored into ;m

infinite prod!:ce, aT fol]ows:

i

co sh z • B sinh z =

eosh z + B sinh z =

n-O

2XBZ- z2

1- m 1-

n=l

B<I

B_I

[36]

[3?]

A complex rlane plot cf the roots of Eou:,tion [31] is shown in Figure A.

plot of XB versus B Is given in FJ_/re 5.

The transfer functions GI(_) , G2(_:) , G3(s) , QI(S) I Y(s) and H2(s) I

Y(s) for the cases of an orifice or valve at section 2 can be expressed as

understcn6 to b_ the groce_ure of finding the zeros cf cosh z + B stnh z

and exnre_shng this funct=cn as a product of correspondin E foctors. The

transfer function Gl(S ) will be v,sed to demonstr, te the root f:c'or method.

Let KoZ o = 1.56 as for the kegetz experiments. The funct_ n GI('_) is

now Eiven by

cosh Tes " 1.56 sinh Tes

cosh TeS + O.6&2 s inh Te s

The numerator of Gl(S) is given by the right side of 5guation [37] with

z = Tes and B = I._6, _nd the (genomin_,tor hy the r_ht side of Eouatbn [36]

with z = Tes and B = 0.6&2. It follows that
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eO

1 - I -. xB. ,2_,2
i , ,,,,

B _'Y"I "" J

[391

By Figure 5

X B - - 0.763

)

)

In the Reget, z experiments Te = 0.0176. The function @l(S) is now

w_ ere

GI(.)- IO

]7
n-O

1+2

_o = /_._ radtans/sec

= 56.8 V/(0.763) 2 + (n._')2

i ,,,,

- 56._v'(o.7o)2 + (-_0_-)2 =2

_ln = _' (0"763)2(0.'763) 2 + n2._ 2

_2n
/,. (0"763)2

"V(o._ . (_ _'_....
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#

For 0 to 9C cp• the function GI( j _) i• approx__mated within I DB in

magnitude and 5° in angle by taking n = O to 5 in Ecuation [AO1 , by letting

s = J_, and neglecting all other terms in the infinite product. The approx-

imation obtained by dropping the factor• for n _ m will be denoted by Glm( j _ ).

In Figure• 6a and b are shown the _mgnitude ratio and phase curves for the

precise transfer function Of( j _ ) and the approximation GI5( j _ ).

Dropping the n _ 2 factors in Formula [&O] yields Gll(S) where Gl](S)

i| a cubic in • divided by a quartic. There is excellent agreement between

GI( j _) and GII( j a_) from zero to 50 cp•.

quency response plots are omitted. !

Dropping the n _ 1 factors in Formula

For the sake of brevity the fre-

[&O], there reeulte

s
1 ÷

OIO(a) .... r_Z • [&l]

"----) ÷ {?--6_3)21 + O.ff'/& I[99.3

In Figure• 7a andTb are plotted the frequency response curves for GI( j _,_)

and GIO(J _ ). Clearly, GIO( j a)) is a good approximation to GI( j CO ) for

O to 15 cpe.

Thus the infinite products in Equation [&O] converge rapidly. The

root factor method yields accurate rational approximations to GI(•). The

bandwidth of the other components in a system with hydraulic lines determines

the largest value of _h to include in the approximations. The largest value

of the line frequency constant @J en should be about 1.5 times the bandwidth

of the other transfer functions in the loop.

The numeratcr of the fraction on the right in Formula [20] for Q2(s) /

Y(s) is the single term oosh Tes. Since Formula [31] holds when S = O there



- 18 -

is no difficulty. On the other hand, the r_merator slnh TeS of H2(s) /

Y(s) in Equation [21] corresponds to B =oo where Equation [_I l
breaks

down. To avoid this difficulty let

slnh Tea

To8 s=O

The Eoua tlon

has the roots

sinh TeS . o

TeS = -+ J n _', n _0

which follows from Equation [35] when B--P _. Thus one may use

221Te s

sinh TeS = Tee 1 + n2_/2

In the denominators of Formulas [20] and [21]

B - Zo(_2" %s) [_q

In the chamber and valve case B is not a constant. It is a simple matter to

solve Equation [31] with z = TeS for given numerical values of Zo, c2 and

c3. Thus if

Te = 0.0176, Zo = 28,700, c2 = 2.72 x 10"5,

c3 = 6.98 x 10-6 Te
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therootsof _uatio. [31] are

whence

Z " - 0.685 .+ 1.22 J, - 0.235 -+ 6._2 J,

- 0.I_5 .+ 9.82 J, - 0.095 .+ 12.0 J, . . .

c3
cosh _, * Zo (c 2 * --z) sinh z

Te

[ 2z2 * O.&Ts z + 0.29s

X 1 + + 1
A.65 97

z2 + 1.37z
1 +

1.9?

•2 • O.19s

Similarly more complicated functions B of s my be treated.

]

_A.Sm_. m_pcNs_

The presmure head transient hi(t) at section 1 for a step change qo

in flow rate at section 1 will be obtained for the case of an orifice at

section 2. By Equation [IO] the ratio Hl(S) / Ql(S) of the Laplace trans-

forms of pressure head and flow rate at x = 0 satisfies

The step change qo in flow rate corresponds to

%
_(s) . --.-,

S

It follows that
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1 4,

1 4.

z - r,o_ -:_es
e

KoZo - i .2Te s
H •

KoZ o + 1

Division yields

.z(s)
n-O _ EoZo 1 s

_here

1 n=O

n 2 n_O

Taking the inverse Laplace transfona the precise response is found to be

where S(t) is the unit step function given by

0 t_O

s(t) -
i t_O

Let hlo(t) denote the approximate response at section 1 computed by

using GlO(S) of Equation [hl] in place of Ol(S). The corresponding ap-

preximate Laplace transform HlO(S) is then given by
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whence

where

%
.lo(s) - __

sK
O

S

I +--

&3.2

C-)1 + O._Tt *
99.3

r

. q_2% | 1 - •"1"52T

Ke [
(2.28) cos

t
_' = ._.--

2Te

[53]_

Curves of hi(t) and hlo(t) versus multiples of Te are plotted in Figure

8. The use of Gio(S) in place of Gl(S) yields a good fit to the actual

transient (marked "theoretical"), and is to be preferred to it in that the

hlo(t) curve is a smoothed version of the hl(t) curve with the sharp corners

removed. The smoothed solution hlo(t) is eas_er to use in analysis and syn-

thesis.

The root factor method is valid for the computation of transients for

systems with boundary conditions other hhan those treated in this paper. It

can be applied with equal facility to the transfer functions of Paynter and

Ezekial (6), 2Welg (7) and others where a linear boundary condition is used.

OPERATI one

d

D _m

dt
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By _flnition

(coshTeD)r(t) -
r(t . Te) * r(t - Te)

2

(sinh TeD) f(t) -

f(t + Te) - f(t - Te)

2

replaced by the

ordinary .differential eouatlons

1

q(L,t) - (cosh TeD ) q(O,t) - -- (slnh TeD) h(O,t)

z,

h(L,t) = - Ze (sinh TeD) q(O,t) • (coeh TeD) h(O,t)

relating sections I and 2. Ec_atlon [48 ] may be taken as

h(o,t)
1 cosh TeD ÷ KoZo sinh TeD

eosh TeD * sinh TeD

By Fx_stlon [40], dropplng the n =_ i terms,

D
1 +-----"

i %
h(O,t)........

Ke _ 20 D
1 +2--D +--

_2o _o

o,(o,t)

The sisple retional D-operator in Equation [59 ] suffices for firs% approx-
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imation studies. The operators GIo(D) or Gll(D) are adequate unless the

system variables change rapidly.

BI_I_P_

i. Mathematical EnKineerin_ Ar_lyeis, by R. Oldenborger, The Macmillan

Company, New York, 1950, pp. 367-37_.

2. Handbook of Fluid Dynamics, edited by Victor L. Streeter, Section 20 by

H. M. Paynter on "Fluid Transients in Engineering Systems," McGraw-Hill

Book Company, Inc., 1961.

3. "An Experimental Determination of the Dynamic Response of a Long Hydraulic

Line," by John D. Regets, Jr., NASA Technical Note D-576, December, 1960.

_. Reference i, p. 375.

5. Operational Mathematics , by R. V. Churchill, MeGraw-Hill Book Company, Inc.,

1958, p. 122.

e "Fluid Power Transmission," F. D. Ezekiel and H4 M. Paynter, Flui_..__ddPowe_.___r

Contro I by J. F. Blackburn, G. Reethof and Shearer (editors), The Technology

Press of MIT and John Wiley and Sons, Inc., New York, 1960, pp. 139-I_3.

. "The Dynamics of Throttling Hydraulic Systems," by F. Zweig, F. B. Toteur,

W. J. Cunningham and J. L. Bower, Dunham Laboratory Yale Univeristy Report,

June, 1950, pp. 1-16 to 1-21.

8. "Dynamic Response of a Hydroelectric Plant," by R. Oldenburger and J.

Donelson, Jr., AIEE Transaction Paper No. 62-167.



-24-

Mr. John Sanders and Mr. John Regetz, Jr., of the Natlonal Aeronautics

and Space Administration supplied the authors with experimental data In con-

nection with this study. They are gratefld for this, and appreciate the

support of the National Aeronautics and Space Adm!nl_tratlon which sponsored

the paper. One of the authors was assisted by a fellowship of the Flsher

Governor Company and the Foundation for Instrumentation, Education and

Research.



-i-

AD_

The transfer mtrix of a fluid line Nhich applies when vlscous effects

are significant and may not be accounted for by a linear friction teru inclnded

in the momentum equation of water hadst is given below.

G (s) m

1_sh _(s) - _ slnh N(s)
_s)

-Z(s) sinh H(s) co.h K(s)
(A)

_erq

sL

z(s) -

Here /o is the density of the fluid, ro is the inner radius of the tube and

Ji(z) is the Bessel function of order i and argumemt s.

The root factor method for representing the transcendental expressions

in Equation (A) by rational functions may be extended to this and other transfer

matrices. The expansion is applied to the transfer matrix directly so viscous

effects are included. It is also applicable for an arbitrary terminal condition.

The extension follows from the infinite product expans_na for the hyperbolic
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sins and eosins and Beesel t_nctions. A brief earner7 of the extension is

glen below. For details of the method the reader is referred to a study of

one of the nut, bore [18].

The infinite pro_ct expansions for the sine and cosine hTperbolie and

Beeeel func%ions are given by [19]

co_ .(e) - z * _ + 1)2,r2/_

oO

(,/2)_ "
" "/_ _,n)

_here OU(_O,n ) = O, n = I, 2, ..., ... and I_(_ + i) is the ordlz_

gala thnction. With the above substitutions G(s) becomes

G(,)

1_lere

i

i[ .2c, ]1 • (_ •1)_i,_/,,

ao

(n=)_)

(_ • z)_==A )

m
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Zo

E2(s)
k nl!l I • k s/_ 2 -

2,n

k - r2pIt_

The Beesel function seroe a#, n aonatonically increase with n, and

_O,n*l approaches 0£2, n rapidly with increasing n. Thus, rational approxi-

mations to O(s) may be readily made by taking onl_ a few term of the infinite

products appearing in S(s). A good approximation to the infinite product appear-

m _2(s) and X2(s) tot JksJ < &o0 _ gi,en b_

A more accurate representation may be obtained by considering a higher order

approximation, but the accuracy obtained with the above expression should

suffice for most studies.

Using the approximation above and keeping only one or two feral of the

infinite product expansions of the hyperbolic sine and cosine f_ncttons in

G(s), a rational model for the dynamics of a transmission line with "losses"
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and arbitrary boundary or terminal conditions results. By keeping only the

first two terns of the infinite products, Nhich yields a model of order six in

s, the resulting approxiastton has been found to give good results for the

transient response of • hydraulic line when the only dissipation of energy was

due to fluid viscoslty.

The infinite prodact expansion also may be applied to the transfer matrix

G_(s) of Equation (2A) by expressing the hyperbolic sine and cosine fUnctions

as infinite products. The transfer matrix G_(s) results when a linear friction

term is added to the ao_ntua equation of water hasmer.

In conclusion the infinite product approach may be used to obtain a

rational model for • transmission line with "lossesm and arbitrary boundary

or terminal conditions. The model is readily derived from the transcendental

transfer matrix characterizing the line. The spproxiaation resulting from

taking only one or two term of the infinite products is more aecurate than •

Taylor series expansion. The model is also relatively simple to obtain.

J
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thesis, Purdue University, January, 1963.
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